Supervised group Lasso with applications to microarray data analysis
نویسندگان
چکیده
منابع مشابه
A semi-supervised approach to projected clustering with applications to microarray data
Recent studies have suggested that extremely low dimensional projected clusters exist in real datasets. Here, we propose a new algorithm for identifying them. It combines object clustering and dimension selection, and allows the input of domain knowledge in guiding the clustering process. Theoretical and experimental results show that even a small amount of input knowledge could already help de...
متن کاملBetween-group analysis of microarray data
MOTIVATION Most supervised classification methods are limited by the requirement for more cases than variables. In microarray data the number of variables (genes) far exceeds the number of cases (arrays), and thus filtering and pre-selection of genes is required. We describe the application of Between Group Analysis (BGA) to the analysis of microarray data. A feature of BGA is that it can be us...
متن کاملSparse Group Lasso: Consistency and Climate Applications
The design of statistical predictive models for climate data gives rise to some unique challenges due to the high dimensionality and spatio-temporal nature of the datasets, which dictate that models should exhibit parsimony in variable selection. Recently, a class of methods which promote structured sparsity in the model have been developed, which is suitable for this task. In this paper, we pr...
متن کاملGroup Lasso with Overlaps: the Latent Group Lasso approach
We study a norm for structured sparsity which leads to sparse linear predictors whose supports are unions of predefined overlapping groups of variables. We call the obtained formulation latent group Lasso, since it is based on applying the usual group Lasso penalty on a set of latent variables. A detailed analysis of the norm and its properties is presented and we characterize conditions under ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2007
ISSN: 1471-2105
DOI: 10.1186/1471-2105-8-60